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Preliminaries



Introduction

In this talk we shall prove the following theorem.

Theorem

Let K be a virtual knot and J(K ) its odd writhe. If

J(K ) 6= 0 then K is not slice.

The proof uses doubled Khovanov homology, an extension of

Khovanov homology to virtual links. Specifically, a

perturbation of doubled Khovanov homology yields the

doubled Rasmussen invariant. In order to prove the above

theorem we shall show that the doubled Rasmussen invariant

contains the odd writhe, and that it is a concordance invariant.
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To begin, we shall quickly recall the definition of the odd

writhe, and give an overview of the construction of doubled

Khovanov homology.

Much of the content of this talk is contained in the paper

Doubled Khovanov homology, available at

front.math.ucdavis.edu/1704.07324.
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Preliminaries

The odd writhe



The odd writhe (Kauffman 2004)

Definition

Let D be a diagram of a virtual knot and G (D) its Gauss

diagram. A classical crossing of D, associated to the chord

labelled c in G (D), is known as odd if the number of chord

endpoints appearing between the two endpoints of c is odd.

Otherwise it is known as even. The odd writhe of D is

defined

J(D) =
∑

odd crossings of D

sign of the crossing.
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Theorem

Let D be a virtual knot diagram of K. The odd writhe is an

invariant of K and we define J(K ) := J(D).

−

−

For example, consider the above diagram of virtual knot 2.1

and its Gauss code. We see that J(2.1) = −2.
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The odd writhe is easy to compute and provides an

obstruction to classicality (and hence triviality) and

amphichirality of virtual knots.

Regarding classicality, one easily sees that a classical knot

necessarily has trivial odd writhe. The unknot is a classical

knot, so if a virtual knot has non-zero odd writhe it is

non-classical and hence non-trivial.

Regarding amphichirality, it can be seen that

J(K ) = −J(−K ), where −K denotes the mirror image of K .
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Preliminaries

Doubled Khovanov homology



Doubled Khovanov homology (R. 2017)

Khovanov homology is a powerful invariant of classical links.

Using Z2 coefficients one can apply it, without modification,

to virtual links. If one wishes to use arbitrary coefficients,

however, some work must be done.

Manturov first extended Khovanov homology with arbitrary

coefficients to virtual links. His work was reformulated by Dye,

Kaestner, and Kauffman, in order to - among other things -

produce a virtual Rasmussen invariant. Tubbenhauer has also

produced a virtual Khovanov theory in the manner of

Bar-Natan (albeit with compatibility issues with the other

theories).
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Doubled Khovanov homology is an alternative extension of

Khovanov homology to virtual links. It differs from the other

extensions in that it does not use any new diagrammatic

technology; the work is done in algebra.

In a nutshell, doubled Khovanov homology is constructed by

“doubling up“ the module assigned to a circle. It turns out

that this allows one to define a homology theory (with a

caveat that we are no longer applying a topological quantum

field theory (TQFT)).
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We will not give a full definition of doubled Khovanov

homology, focussing instead on the perturbation of the theory

known as doubled Lee homology. Here we simply fix some

notation.

Definition

Let L be a virtual link. Denote by DKh(L) the doubled

Khovanov homology of L, a bigraded finitely generated

Abelian group.

9/37



The doubled Rasmussen

invariant



Doubled Khovanov homology can be used to produce a

concordance invariant of virtual knots, the doubled Rasmussen

invariant. Before defining this invariant, we shall describe a

perturbation of doubled Khovanov homology.
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The doubled Rasmussen

invariant

Doubled Lee homology



Perturbing doubled Khovanov homology

There is a perturbation of classical Khovanov homology due to

Lee; it is formed by adding a term of quantum grading +4 to

the differential. This technique may be repeated with doubled

Khovanov homology, yielding doubled Lee homology.

Definition

Let L be a virtual link. Denote by DKh′(L) the doubled Lee

homology of L. Denote by DKh′k(L) the homogenous

elements of homological degree k .

Doubled Lee homology shares some properties with its classical

counterpart, but it also exhibits some important differences.
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As in the classical theory, generators of DKh′(L) are associated

to alternately coloured smoothings of L. Henceforth we shall

use the shorthand ACS = alternately coloured smoothing.

Theorem

Given a virtual link L

rank (DKh′(L)) = 2 |{ACSs of L}|

Pick a diagram D of L, and let S be an ACS of D. Then

S ←→ su, sl

where su, sl ∈ DKh′(L) are generators of DKh′(L).

12/37



There are two gradings on DKh′(L): the homological grading

i , and the quantum grading j (both familiar from classical

Khovanov homology). The homological grading of su and sl is

easy to compute from S :

i(su) = i(sl) = number of 1-resolutions in S − n−

where n− denotes the number of negative classical crossings of

D. The quantum grading is harder to compute.
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The doubled Rasmussen

invariant

Alternately coloured smoothings of

virtual links



How many ACSs does a virtual link have?

Combining the fact that DKh′(L) is an invariant of the virtual

link L with the above theorem relating generators of DKh′(L)

with ACSs, we see that the number of ACSs is a link invariant.

A classical link diagram has one ACS for each of its

orientations. This is no longer the case for virtual knots;

consider the following virtual link diagram:

Neither of its smoothings are alternately colourable, and its

doubled Lee homology is trivial i.e. DKh′ ( ) = 0.
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In light of this, we must ask how many ACSs a virtual link has,

in general. We answer this question using Gauss diagrams.

Definition

A circle within a Gauss diagram is degenerate if it contains

an odd number of chord endpoints.

Theorem

Given a diagram D of a virtual link L

|{ACSs of L}| = |{ACSs of D}|

=

{
2|L|, if G (D) has no degenerate circles

0, otherwise.

15/37



This explains why the diagram given above has no ACSs: both

of the circles in its Gauss diagram are degenerate.

Corollary

Every virtual knot K has 2 ACSs, so that

rank(DKh′(K )) = 4.

To prove the corollary one simply needs to observe that as the

Gauss diagram of a knot contains only one circle, and each

chord has two endpoints, this single circle cannot be

degenerate.
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The doubled Rasmussen

invariant

Defining the invariant



The above corollary shows us that the doubled Lee homology

of a virtual knot is always of rank 4. Further, it can be shown

that the two ACSs of a virtual knot always share the same

underlying smoothing. That is, they can be obtained from one

another by simply swapping the colours of the circles.

Given diagram D of a virtual knot K , let S be an ACS of D,

and S denote the ACS obtained by flipping the colouring (i.e.

sending red to green and green to red). It is clear that both

S and S are at the same height, so that there is only one

non-trivial homological degree in DKh′(K ).
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Further, it turns out that if the quantum degree of any of the 4

generators of DKh′(K ) is known, one can recover the quantum

degree of all the others. Thus the information contained in the

non-trivial quantum degrees of DKh′(K ) is equivalent to a

single integer, and we can make the following definition.

Definition

For a virtual knot K let s(K ) = (s1(K ), s2(K )) ∈ Z× Z
where

s1(K ) = highest non-trivial j grading of DKh′(K ) − 1

s2(K ) = i(su/l) = height of S or S .

We refer to s(K ) as the doubled Rasmussen invariant of K .
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An example

m

m

η

−η

−2 −1 0
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DKh′


 =

−2 −1 0

−7
−6
−5
−4
−3
−2
−1

i

j

Z
Z
Z
Z

��SSZ

��ZZZ2

��SSZ

s(2.1) = (−5,−2)
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The doubled Rasmussen

invariant

s2(K ) = J(K )



Theorem

Let be D a diagram of a virtual knot K. Then s2(K ) = J(K ).

Recall that s2(D) is equal to the height of the alternately

coloured smoothings of D. Further, recall that - in contrast to

the classical case - the oriented smoothing of a virtual knot

diagram is not alternately colourable, in general. In fact, the

alternately colourable smoothing of virtual knot 2.1 is the

unoriented smoothing.

Therefore, in order to prove this theorem, we shall show that a

classical crossing of a knot diagram D is even if and only if it

is resolved into its oriented resolution in the ACSs of D.
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To see this, consider the following situation at a classical

crossing of D:

Next, consider the table of contributions of each crossing to

both s2(K ) and J(K ):

sign parity reso. J(K ) s2(K )

+ odd 1 +1 +1

+ even 0 0 0

− odd 0 −1 −1

− even 1 0 0 22/37



Interaction with cobordisms



We move on to looking at how the doubled Rasmussen

invariant s(K ) interacts with cobordisms between virtual

knots. In particular we shall look at its interaction with

concordances.

Our aim is to show that a concordance S between two virtual

knots K1 and K2 induces a map φS : DKh′(K1)→ DKh′(K2),

and that this map is necessarily non-zero.
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Interaction with cobordisms

Assigning maps to cobordisms



As in the case of classical Khovanov homology, we can assign

maps on DKh′ to cobordisms. We do this by breaking

cobordisms down into elementary cobordisms: they correspond

to the virtual Reidemeister moves, and 0-, 1- , and 2-handle

additions. The elementary cobordisms associated to the virtual

Reidemeister moves are all topologically (disjoint unions of)

cylinders. The cobordisms associated to handles are as follows:

0-handle 2-handle

1-handles

24/37



We will not give a full definition of the maps assigned to

elementary cobordisms, moving straight on to the definition of

the map assigned to a general cobordism. Let us simply say

that every elementary cobordism is assigned a well defined

map on doubled Lee homology.

Let S be a cobordism between virtual links L and L′. Further,

let

S = S1 ∪ S2 ∪ · · · ∪ Sn

where Si is an elementary cobordism (we can always do this,

perhaps after an isotopy). Define φS : DKh′(L)→ DKh′(L′) to

be

φS = φSn ◦ φSn−1 ◦ · · ·φS2 ◦ φS1 .
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An example

This cobordism, between virtual knot 2.1 and the

unknot, is made up of two 1-handle additions.

The first splits one component into two, the next

merges two components into one; it describes a

surface of genus 1.

This cobordism must be assigned the zero map,

however: the maps φS are necessarily homological

degree preserving, and we observed above that

s2(2.1) = −2, while s2(unknot) = 0. Thus the

only homological degree preserving map between

DKh′(2.1) and DKh′(unknot) is the zero map.
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Unlike in the classical case, many connected cobordisms must

be assigned the zero map, a consequence of one of the

following two phenomena:

1. if there does not exist a homological degree k such that

both DKh′k(L) and DKh′k(L′) are non-trivial, there can

be no map φ : DKh′(L)→ DKh′(L′) which is both

non-zero and homological degree preserving

2. if a cobordism S is such that a link L appears within it

with DKh′(L) = 0, then φS is the zero map

In order to make use of cobordisms between virtual links we

must identify classes of cobordisms which are assigned

non-zero maps.
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As we saw above, whether or not a virtual link possesses ACSs

or not depends on the cirlces within its Gauss diagram. It is

possible for a 1-handle which splits one component into two to

create a degenerate circle, and thus destroy all ACSs.

Theorem

Let S be an elementary cobordism between virtual links L

and L′. Further assume S is a 1-handle addition which splits

one component into two. If S is attached between arcs of L

which are coloured opposite colours in an ACS of L, then L′

has no ACSs and DKh′(L′) = 0.

28/37



In order to prove this theorem we must first outline a bijective

correspondence between ASCs, colourings of shadows, and

colourings of Gauss diagrams:
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Thus we have a bijective correspondence between ACSs and

particular colourings of Gauss diagrams. One sees that if a

circle in a Gauss diagram is degenerate, it cannot be coloured

in the manner described. Thus if a 1-handle addition creates a

degenerate circle, it prohibits the existence of ACSs.

Below we demonstrate how a 1-handle may create a

degenerate circle:
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An example
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To recap, a connected cobordism between virtual links must

be assigned the zero map if the homological degrees of the

initial and terminal links do not match up, or if a link appears

in the cobordism which has no ACSs.

Our final task is to show that a concordance between knots - a

cobordism of genus 0 - does not suffer from the above

problems, and is assigned a non-zero map.

Theorem

Let S be a concordance between virtual knots K and K ′.

Then φS : DKh′(K )→ DKh′(K ′) is non-zero.
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The proof of this theorem proceeds as follows: first, it is

shown that every link appearing in a concordance between

knots has ACSs, then an induction argument is used.

To this first point, notice that degenerate circles are always

created in pairs, and that one degenerate circle can be

canceled against another to produce a non-degenerate circle.

However, if two degenerate circles which lie on the same

connected component are canceled together, a piece of genus

is introduced. This cannot occur in a concordance, of course,

so that circles from different connected components must be

canceled together. One sees that this leads to a non-compact

situation.
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Degenerate circles within cobordisms

D D D D

DD

L

L′
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The proof is concluded using an induction argument on the

number of elementary cobordisms making up a concordance.

The idea is to start with a concordance which is assumed to

be assigned a non-zero map, and add on an elementary

cobordism. One then shows that the resulting concordance is

also assigned a non-zero map.
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Conclusions



Proving the main theorem

Armed with the result from the previous section, we can

quickly complete the proof that the odd writhe is an

obstruction to sliceness.

Proof of the main theorem.

Let K and K ′ be concordant virtual knots, and S a

concordance between them. Then, as observed above,

φS : DKh′(K )→ DKh′(K ′) is non-zero, and homological

degree preserving. As K is a virtual knot, the only non-trivial

part of DKh′(K ) is DKh′s2(K)(K ). But K ′ is also a knot, so

DKh′s2(K ′)(K
′) is the only non-trivial part of its homology.

As φS is non-zero, we must have 0 6= φS(x) ∈ DKh′s2(K)(K
′),

so that s2(K ) = s2(K ′) and J(K ) = J(K ′).
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Restricting to the case in which K ′ is the unknot, so that

J(K ′) = 0, we see that if K is slice J(K ) = 0, as required.

As a quick corollary we also obtain the following.

Theorem

Let K be a virtual knot. If J(K ) 6= 0 then K is not

concordant to a classical knot.

Thus we see that the odd writhe partitions concordance

classes of virtual knots.
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